Preventive properties of the Kardilex complex

Kardilex supplement for the heart


Yu.V. Marushko, T.V. Hyshchak

O.O. Bogomolets National Medical University

Introduction. Currently, much attention is paid to the prevention of diseases of the cardiovascular system in adults and children.

Kardilex is a balanced complex of amino acids, vitamins and bioactive substances used to improve the activity of the cardiovascular system. The composition of Kardilex includes levocarnitine, levoarginine, taurine, coenzyme Q-10, vitamin B5, vitamin PP, vitamin B6, vitamin C, magnesium and hawthorn extract. Each of the components of the drug has a wide spectrum of action in the body, and the key component of this spectrum is the effect on the cardiovascular system.

The purpose of the work is to summarize literature data on the properties of the components of Kardilex and the possibility of its use in preventive medicine.

Most of the effects of levoarginine are associated with the fact that it takes part in the formation of nitric oxide, which plays an important role in the functioning of the cardiovascular, immune, and nervous systems [4,57]. Evidence-based medicine available today indicates that administration of levoarginine improves endothelial function in angina pectoris, cardiovascular insufficiency, and hypercholesterolemia [9].

Levoarginine improves the detoxification of ammonia in the liver, promotes the conversion of ammonia into urea, and binds toxic ammonium ions formed during the catabolism of proteins in the liver [40].

Levoarginine has hepatoprotective properties, is able to reduce the viscosity of protein-lipid contact zones and increase the activity of cytochrome P-450, which ensures the detoxification function of the liver [41]. To date, a number of combined hepatoprotectors containing levoarginine have been created.

One of the important properties of levoarginine is its ability to restore the body in asthenia. With metabolic and traumatic stress, the need for arginine increases. As a result of a relative deficiency of arginine, there is a violation of microcirculation, wound healing and dysfunction of T cells [56].

Levoarginine penetrates through the endothelial cells into the cells of the smooth muscles of the vascular wall, activates guanylate cyclase, which leads to an increase in the level of c-AMP, which causes relaxation of the vessels [16, 51]. The vascular effects of levoarginine correlate with its plasma concentration [ 44 ]. In young people, levoarginine is more effective in increasing endothelium-dependent vasodilation [53].

Oral administration of levoarginine improves the condition of patients with angina [44].

In a randomized, double-blind, placebo-controlled trial involving patients with heart failure, the efficacy of oral levoarginine (5.6-12 g/day) was demonstrated. Patients taking levoarginine noted an improvement in general well-being, better tolerance of physical activity (the amount of physical work per unit of time increased by almost 20%). Arterial distensibility and blood filling increased, blood pressure decreased [58].

A decrease in blood pressure under the influence of levoarginine is also indicated in another work [57]. In addition, under the influence of levoarginine, the length of stay in the hospital for surgical patients is reduced, the incidence of nosocomial infections is reduced by 40% [52].

The effects of levoarginine on the human body are multifactorial and dose-dependent. The therapeutic dose of levoarginine is usually 3-8 g/day [45]. Smaller doses contained in the drug Cardilex (in one capsule - 245 mg) can be used for preventive purposes. Further studies of the effects of levoarginine and focus on individual selection of the dose of the drug are promising.

здорове_серцеLevocarnitine plays an important role in providing energy to the myocardium. It is an indispensable factor in the metabolism of fatty acids. Medicinal products based on levocarnitine occupy an important place among cardiometabolic drugs [34, 36]. The relationship between carnitine concentration in blood plasma and myocardial dysfunction was revealed [62]. The stress-protective properties of levocarnitine have been demonstrated, manifested in reduced levels of cortisol, adrenaline and norepinephrine and natriuretic peptide [6, 23].

Levocarnitine is a vitamin-like substance that is naturally synthesized in the liver, kidneys and brain tissue from the amino acids lysine and methionine with the participation of iron and ascorbic acid. It is found in blood plasma in free form and in the form of acylcarnitine esters. Levocarnitine is the main cofactor of fatty acid metabolism in the heart, liver and skeletal muscles, plays the role of the main carrier of long-chain fatty acids in the mitochondria, where their β-oxidation to acetyl-CoA occurs, followed by the formation of ATP. The drug promotes the removal of metabolites and toxic substances from the cytoplasm of cardiomyocytes, improves metabolic processes in the myocardium, accelerates the growth and repair of damaged heart cells. Levocarnitine exerts a cardioprotective effect, helps reduce myocardial ischemia and limit the area of its damage, stimulates cellular immunity.

Thus, Azevedo et al (2005) conducted a large-scale study of the use of levocarnitine at a dose of 100 mg/kg/day in idiopathic dilated cardiomyopathy in children. The results showed a significant improvement in echocardiographic parameters of left ventricular contractility and a reduction in clinical manifestations of the disease [43].

One capsule of Cardilex contains 280 mg of levocarnitine. Such doses have a preventive effect on heart damage in various pathological processes and are often used in sports medicine to improve the tolerance of physical exertion.

Coenzyme Q-10 is of great importance in the body's energy supply. It is a carrier of electrons in the respiratory chain of mitochondria, taking part in the processes of oxidative phosphorylation and ATP synthesis. Coenzyme Q10 is the only lipid-soluble antioxidant that is synthesized in the human body and is able to be regenerated under the influence of the body's enzyme systems, while other antioxidants are irreversibly oxidized [7, 59]. As an antioxidant, coenzyme Q10 outperforms all other natural antioxidants and is therefore considered the most promising for use in clinical practice.

The implementation of the antioxidant and coenzyme function of coenzyme Q10 determines an important, and sometimes a key value: in the increased contractility of the myocardium and striated muscles; improving blood flow in the myocardium, increasing tolerance to physical exertion, including in cardiac patients; stimulation of processes of energetic burning of fats; enrichment of adipose tissue with oxygen, which ensures effective reduction of body weight in case of obesity; normalization of blood lipid composition; regulation of glucose level and improvement of rheological properties of blood; stimulation of hematopoietic processes; immunomodulation, apoptosis and slowing down of aging processes. In addition, coenzyme Q10 has antiarrhythmic, hypotensive and antiatherosclerotic effects; onco- and hepatoprotective effect. To obtain a therapeutic effect, adults need to take about 100 mg of coenzyme a day. Smaller doses (one capsule of Cardilex contains 14 mg of coenzyme Q10) have a preventive effect.

Coenzyme Q10 is synthesized in the human body from the amino acid tyrosine with the participation of vitamins of group B, C, folic and pantothenic acids, as well as a number of trace elements [18]. This is a complex process regulated by several enzymatic systems. With a deficiency of vitamins and microelements, a violation of regulatory enzymatic systems, even in the absence of any pathology, endogenous coenzyme biosynthesis does not meet the body's needs. The largest amount of coenzyme is in the mitochondria of heart, liver, kidney, and pancreas cells. This problem is especially relevant in children. Numerous studies confirm the widespread deficiency of most vitamins, minerals, essential trace elements and dietary fibers. It should be taken into account that the consumption of coenzyme Q10 progressively increases with physical and emotional stress, with frequent respiratory diseases in children and chronic stress.

In patients with high cholesterol concentration, there is a tendency to decrease the level of coenzyme Q10 compared to healthy individuals of the same age [7].

The level of coenzyme Q10 is significantly reduced in patients with heart failure and correlates with the severity of heart failure [61]. Enrichment with coenzyme Q10 of various pharmacological drugs improves impaired heart function and the clinical course of heart failure [47].

The 2014 Q-SYMBIO randomized controlled trial demonstrated a reduction in major adverse cardiovascular events with coenzyme Q10 [55, 59].

Data on the effect of coenzyme Q10 on blood pressure are contradictory. There are reports both in the absence of a significant decrease in blood pressure on the background of taking the drug [46], and about its hypotensive effect [7]. Different modes of coenzyme Q10 use in hypertension have been studied - from 30 to 150 mg per day. Most often, it is prescribed in a dose of 60–120 mg for 1–3 doses per day for a long period (at least 8 weeks) [7].

The combined use of levocarnitine and coenzyme Q10 in children aged 12-16 years with chronic fatigue syndrome against the background of mitral valve prolapse showed good treatment results [5].

Taurine enters the body with food and is synthesized from methionine and cysteine, mainly in the liver. Increased taurine intake has been shown to be inversely correlated with the prevalence of coronary heart disease [32].

The hepato- and cardioprotective effect of taurine has been demonstrated in patients with chronic heart failure and diabetes. Additional hypoglycemic, lipid-lowering capabilities of taurine, positive effect on insulin resistance were noted [32, 39]. It has been established that taurine inhibits the development of insulin resistance, accumulation of visceral fat and weight gain. The revealed pharmacological properties of taurine indicate the prospects of its use for the purpose of prevention and treatment of cardiovascular pathology in metabolic syndrome [15].

The use of taurine in combination with vitamin B6 helps to reduce the neurotoxic and hepatotoxic effects of some drugs [19, 29].

Positive endothelium-protective properties of taurine as part of combined therapy for chronic heart failure were found [35]. A statistically significant hypolipidemic effect was observed along with a reduction in heart failure severity as measured by Nt-proBNP [38].

The experiment revealed the antiarrhythmic effectiveness of taurine in acute myocardial ischemia, which outweighed the effect of lidocaine and obsidan [20].

A number of experimental data confirm the neuroprotective and antioxidative effect of taurine [33, 48, 50, 60].


1 capsule of the drug Kardilex contains 28 mg of taurine, which with long-term use makes it possible to fully meet the body's needs for this amino acid.

The vitamin-mineral complex containing the drug Kardilex enhances the effect of other components and improves their assimilation by the body. So, one capsule of Cardilex, along with levoarginine, levocarnitine, coenzyme Q10 and taurine, contains preventive doses of the most important vitamins (vitamin B5 – 10.5 mg, vitamin PP – 7 mg, vitamin B6 – 0.98 mg, vitamin C – 7 mg) , as well as magnesium - 35 mg.

Nicotinic acid (vitamin PP) – plays an important role in energy production. This vitamin is necessary for the normal process of amino acid metabolism, participates in more than 50 reactions of fat and carbohydrate metabolism, has anti-inflammatory activity, normalizes liver function, dilates capillaries, has the ability to reduce blood cholesterol and triglycerides. Nicotinic acid is part of enzymes that regulate redox processes. In the doses contained in the drug Kardilex, it does not show its side effects regarding the expansion of blood vessels of the skin and the feeling of heat.

The active effect of vitamin PP on metabolic processes is caused by its inclusion in the composition of niacinamide adenine dinucleotide (NAD) and niacinamide adenine dinucleotide phosphate (NADP), which are cofactors of a number of enzymes. In particular, niacinamide is part of codehydrases, which are carriers of hydrogen to flavoprotein enzymes, and thereby regulates redox processes in the body.

Vitamin B5 (pantothenic acid) in the body turns into pantethine, which is part of coenzyme A, which plays an important role in oxidation and phosphorylation processes. Vitamin B5 is necessary for the metabolism of fats, carbohydrates, amino acids, synthesis of vital fatty acids, cholesterol, histamine, acetylcholine, hemoglobin. An important property of vitamin B5 is its ability to stimulate the production of glucocorticoids by the adrenal glands, which has a beneficial effect on the course of arthritis and allergic diseases when this drug is included in the treatment regimen.

Vitamin C is a powerful antioxidant. It plays an important role in the regulation of redox processes, participates in the synthesis of collagen and procollagen, the exchange of folic acid and iron, as well as the synthesis of steroid hormones and catecholamines. Ascorbic acid also regulates blood coagulation, normalizes the permeability of capillaries, which is necessary for hematopoiesis, has anti-inflammatory and anti-allergic effects.

Vitamin C protects the body from the effects of stress. After all, the adrenal glands, which are actively involved in the stress response, contain more ascorbate than any other organ. Vitamin C helps the production of stress hormones and protects the body from toxins produced in the process of their metabolism. It strengthens reparative processes, increases resistance to infections. There are many theoretical and experimental prerequisites for the use of vitamin C to prevent cancer.

Vitamin C improves the body's ability to absorb calcium and iron, remove toxic copper, lead and mercury. It is important that in the presence of an adequate amount of vitamin C, the stability of vitamins B1, B2, A, E, pantothenic and folic acids increases significantly. Vitamin C prevents the oxidation of low-density lipoprotein cholesterol and, thus, prevents the deposition of oxidized forms of cholesterol in the vessel wall.

Vitamin B6 is a group of compounds (pyridoxine, pyridoxal, pyridoxamine, pyridoxal phosphate) that take part in the metabolism of trace elements, synthesis of neurotransmitters (serotonin, dopamine, adrenaline, noradrenaline, GABA), histamine, lipid synthesis, gluconeogenesis.

Pyridoxine primarily performs the function of stimulating metabolism in the body and is necessary for the normal functioning of the central and peripheral nervous system. Vitamin B6 improves the use of unsaturated fatty acids, stimulates hematopoiesis, and also ensures the processes of decarboxylation, peramination, and deamination of amino acids. In the female body, vitamin B6 plays an important role in maintaining the balance of sex hormones. Therapeutic doses of vitamin B6 for oral administration in adults are 0.02-0.03 g 1-2 times a day for 1-2 months. In children, the doses are smaller.

The inclusion of group B vitamins in the complex treatment of arterial hypotension in children makes it possible to significantly improve the general condition of patients and stabilize blood pressure within normal values [27].

Hawthorn extract contains amines (choline, acetylcholine), beta-carotene, hyperoside, vitamin K, anthocyanins, sugars, quercetin, sterols, flavonoids, ascorbic acid, pectins, sorbitol, trace elements Cu, Fe, Zn, Mo, Mg, Co. Hawthorn fruit extract improves blood circulation in the coronary vessels of the heart and brain vessels, increases the sensitivity of the myocardium to cardiac glycosides, slightly increases the contraction of the heart muscle and reduces the excitability of the latter.

Hawthorn preparations have a moderate cardiotonic and sedative effect, have antispasmodic and hypotensive properties, normalize blood clotting indicators.

In experimental studies on animals, the neurotropic and diuretic effects of hawthorn fruit extract were revealed [21].

Preparations based on hawthorn are recommended in the subclinical and initial clinical stages of cardiovascular diseases [30].

Magnesium plays a multifaceted role in the human body. It is necessary for the normal course of many biochemical reactions and physiological processes that provide energy and function of various organs. In particular, magnesium as a co-factor participates in glycolysis and the hydrolytic splitting of ATP. Up to 80-90% of intracellular magnesium is in a complex with ATP. Being in complexes with ATP, magnesium ions ensure the release of energy through the activity of magnesium-dependent ATPases and are necessary for all energy processes in the body. As a cofactor of the pyruvate dehydrogenase complex, magnesium ions ensure the flow of glycolysis products to the Krebs cycle and prevent the accumulation of lactate. In addition, magnesium actively participates in anabolic processes: synthesis and decay of nucleic acids, synthesis of proteins, fatty acids and lipids.

Magnesium regulates the state of the cell membrane, the transmembrane transfer of calcium and sodium ions, controls the exchange processes in cardiomyocytes. The participation of magnesium is necessary for the adequate functioning of the immune system.

Mechanisms of magnesium participation in the formation of bone tissue have been established. Thus, magnesium contributes to the maintenance of a normal level of calcium in bone tissue, contributes to its constant renewal in the bone, and prevents calcium loss. It has been proven that long-term magnesium deficiency, especially in combination with hypodynamia and calcium deficiency, is one of the conditions for the formation of scoliosis and osteochondrosis of the spine.

Magnesium is one of the main elements that maintains the balance of excitation-inhibition processes [11]. It is considered one of the components of the body's stress-limiting system, as all its effects are aimed at reducing stress manifestations and normalizing adaptation processes [1, 2, 24]. It has been proven that magnesium takes an active part in the synthesis of melatonin, which is called the central hormone of adaptation. The complex mechanism of interaction between magnesium and melatonin has not yet been fully elucidated, but it is known that they act synergistically on some body functions [8, 28]. Research results have shown that adding magnesium to the diet increases and harmonizes the production of endogenous melatonin and reduces the level of cortisol [42], and the use of magnesium preparations contributes to the normalization of night sleep [25, 31].

E.S. Akarachkova indicates that magnesium-containing drugs can be a good alternative to tranquilizers and anxiolytics [3].

In the maintenance of myocardial function, magnesium is a synergist of potassium [13, 14]. As a result of magnesium deficiency, the deposition of calcium salts in blood vessels increases [63].

Insufficiency of magnesium in the body is accompanied by an increase in the level of markers of oxidative stress. At the same time, there is a weakening of antioxidant protection. Moreover, the development of oxidative stress involves systemic reactions of hyperactivation of inflammation and dysfunction of the vascular endothelium, as well as changes at the cellular level, including mitochondrial dysfunction and the formation of an excess of fatty acids [37].

It has been proven that therapy with magnesium drugs reduces the level of sympathetic and restores parasympathetic effects on the regulation of heart rhythm, establishing balance in the autonomic nervous system [2, 3].

A decrease in the thickness of the intima-media of the carotid artery was revealed when magnesium preparations were prescribed [54], which reveals broad prospects for the use of magnesium-based preparations for the correction of endothelial dysfunction in many diseases.

In the experiment, it was confirmed that magnesium preparations potentiate the effect of antihypertensive drugs, which increases the effectiveness of complex therapy [49].

Recently, among all magnesium compounds, complexes with biological ligands of natural origin (with pyridoxine, amino acids) have been preferred in the correction of magnesium deficiency states. Such drugs show the highest bioavailability [22].

The combination of magnesium and pyridoxine proved to be particularly effective, which was reflected in many literary data [2, 10, 11, 17, 25]. Pyridoxine not only directly affects the regulation of vascular tone, but also has the ability to potentiate the effect of magnesium and improve the absorption of ions into magnesium in the gastrointestinal tract [2, 12].

In our published works [25, 26], the high efficiency of the combined drug of magnesium and pyridoxine in children with asthenic syndrome, which is a consequence of chronic stress conditions, was revealed. Taking a combined magnesium and pyridoxine drug in this category of patients, leading to the stimulation of stress-limiting adaptation programs, is able to normalize adaptation disorders and increase the body's resistance to the long-term effects of stress factors, improve the general level of health and quality of life in general.

Thus, recently a lot of new data has been accumulated on the influence of key nutrients, such as coenzyme Q10, levocarnitine, levoarginine and taurine on the activity of the cardiovascular and other systems of the body, as well as new evidence of the effectiveness of vitamin and mineral complexes in metabolic processes in body But there is only a small number of works devoted to the combined use of these biologically active substances. Thus, a database search by Wong AP et al. in 2016 [61] found only four papers between 2000 and 2015 using multiple micronutrients in heart failure.


Therefore, the further search for effective combinations, including amino acid and vitamin-mineral complexes, for the treatment and prevention of cardiovascular diseases, as well as the development of dose and course regimens for their use, remains relevant today. In our opinion, Cardilex is one such drug (Registration No. 05.03.02-04/36633 dated 14.08.2015).

According to the instructions, Kardilex has tonic properties; characterized by significant antioxidant activity; prevents or reduces the risk of cell damage caused by oxygen deficiency; normalizes the energy balance of cells, myocardium and the body as a whole; accelerates the metabolism of fatty acids, prevents peroxidation of low-density lipids; has anabolic properties; reduces the harmful effects of radio and chemotherapy, promotes blood thinning.

Kardilex can be effective as a natural energy tonic; in the complex prevention of cardiovascular diseases: coronary heart disease, arrhythmia, cardiomyopathy and other diseases, as well as in atherosclerosis, hypertension and muscular dystrophy; in complex therapy during the rehabilitation period after serious illnesses; as a preventive measure to prevent exhaustion in case of excessive physical and mental stress and when being in environmentally unfavorable conditions; for the purpose of normalizing metabolism, reducing fat deposits, strengthening muscle tissues, during the rehabilitation period after radio and chemotherapy; as a tonic.


  1. Акарачкова Е. С. Алгоритм диагностики, лечения и профилактики стресса и стресс-связанных расстройств у детей и подростков / Е. С. Акарачкова, С. В. Вершинина, О. В. Котова, И. В. Рябоконь // Вопросы практической педиатрии. - 2014.- №6.-С.24-31.
  2. Акарачкова Е. С. Основы терапии и профилактики стресса и его последствий у детей и подростков / Е. С. Акарачкова, С. В. Вершинина, О. В. Котова, И. В. Рябоконь //Вопросы современной педиатрии. - 2013. - № 3. - С. 38-44.
  3. Акарачкова Е. С. Роль магния в процессах нейропротекции и нейропластичности / Е. С. Акарачкова, С. В. Вершинина // Журнал неврологии и психиатрии им.С.С.Корсакова. - 2013. - № 2. - С. 80-83.
  4. Алмакаева Л. Г. Аргинин и его применение в медицине и фармации / Л.Г. Алмакаева, Е.В. Литвинова // Ліки України. – 2011. - №1 (5). - С.23-26.
  5. Баедилова М.Т.Энерготропная терапия при синдроме хронической усталости / М. Т. БаедиловаС.Е. Лебедькова, О.Ю. Трусова, В.В.Суменко// Российский вестник перинатологии и педиатрии. - 2015.- № 2.-С.100-103.
  6. Балыкова Л.А. Элькар в детской спортивной практике /Л.А. Балыкова, С.А.Ивянский, А.Н.Урзяева [и др.] //Российский вестник перинатологии и педиатрии. – 2013. - №5. – С. 45-48.
  7. Барна О. М. Можливості коензиму Q10 в кардіологічній практиці: від корекції окислювального стресу до кардіологічного континууму / О. М.Барна // Ліки України. - 2013. - №6 (172). – С.19-35.
  8. Бурчинский С. Г.Мелатонин и его возможности в неврологической практике /С.Г.Бурчинский//Український вісник психоневрології. – 2013. – Т.21, Вип. 1 (74). - С.112-117.
  9. Граник В. Г. Метаболизм L-аргинина / В. Г. Граник // Хим-фарм. журн. – 2003. – №3. – С. 3–20.
  10. Громова О. А. Дефицит магния как проблема современного питания у детей и подростков / О. А. Громова // Педиатрическая фармакология. - 2014. - № 1. - С. 20-30.
  11. Громова О.А. Дефицит магния как проблема стресса и дезадаптации у детей /О.А. Громова, Л.Э.Федотова, А.Г.Калачева [и др.] //Педиатрия. - 2013. - №5. - С.110-121.
  12. Громова О. А. Диагностика дефицита магния. Концентрации магния в биосубстратах в норме и при различной патологии / О. А. Громова, А. Г. Калачева, И. Ю. Торшин [и др.] // Кардиология. - 2014. - № 10. - С. 63-71.
  13. Громова О. А. Калийсберегающие свойства магния / О. А. Громова, А. Г. Калачева, И. Ю. Торшин [и др.] // Кардиология. - 2013. - № 10. - С. 38-48.
  14. Громова О. А. О синергизме калия и магния в поддержании функции миокарда / Ю. А. Громова, И. Ю. Торшин, А. Г. Калачева, Т. Р. Гришина // Кардиология. - 2016. - № 3. - С. 73-80.
  15. Звягина Т.С.Влияние таурина на биоэнергетические процессы митохондрий сердца крыс с синдромом инсулинорезистентности / Т. С. ЗвягинаН.И. Горбенко,А.Ю. Бориков //Патологическая физиология и экспериментальная терапия. -2016.- № 2.-С.57-62.
  16. Зорій І. А. Ефективність застосування єль-аргініну в комплексному лікуванні дистальної симетричної полінейропатії у хворих на цукровий діабет 2-го типу / І.А. Зорій // Клінічна та експериментальна патологія. – 2014. – Т. 13, №1 (47). – С.34-38.
  17. Каркашадзе Г. А. Дефицит магния в детской неврологии: что нужно знать педиатру? / Г. А. Каркашадзе, Л. С. Намазова-Баранова, А. М. Мамедьяров [и др.] // Вопросы современной педиатрии. - 2014. - №5. - С. 17-25.
  18. Ключников С.О.Коэнзим Q10. Перспективы клинического применения / С.О.Ключников // Consiliummedicum/ Педиатрия. - 2014.- № 3.-С.84-88.
  19. Королева М.В.Клиническая эффективность таурина при лечении поражения печени, вызванного гепатотоксическим действием противотуберкулезной терапииМ. В. Королев // Клиническая фармакология и терапія. - 2015.- № 5.-С.66-68.
  20. Крылова И.Б.Антиаритмическая активность таурепара при ишемическом и реперфузионном повреждении миокарда / И.Б. Крылова, В.В. Бульон, Е.Н. Селина [и др.] //Бюллетень экспериментальной биологии и медицины. - 2015.- № 8.-С.192-195.
  21. Куркин В.А.Диуретическая и антидепрессивная активность густого экстракта из плодов боярышника кроваво-красного / В.А. Куркин,А.В. Куркина, Е.Н. Зайцева [и др. ]// Бюллетень сибирской медицины. - 2015.- № 3.-С.18-22.
  22. Майданник В. Г. Клініко-патогенетична характеристика вегетативних дисфункцій та їх лікування у дітей: навчальний посібник / В.Г. Майданник, О.І. Сміян, Т.П. Бинда, Н.О. Савельєва-Кулик; за ред. В.Г. Майданника. – Суми: Сумський державний університет, 2013. – 173 с.
  23. Марушко Ю. В. Вміст N-термінального мозкового натрійуретичного пептиду і толерантність до фізичного навантаження у дітей із вторинними кардіоміопатіями та корекція виявлених змін препаратом «Агвантар»/ Ю.В. Марушко, Т.В. Гищак, О.В. Хоміч // Современная педиатрия. - 2015. - №2(66). – С.62-66.
  24. Марушко Ю. В. Системні механізми адаптації. Стрес у дітей: монографія / Ю. В. Марушко, Т. В. Гищак // Київ-Хмельницький: приватна друкарня ФО-П Сторожук О.В., 2014. – 140 с.
  25. Марушко Ю.В. Ефективність застосування Магне-В6 при астенічному синдромі і порушеннях нічного сну у дітей / Ю.В. Марушко, Т.В. Гищак //Современная педиатрия. – 2013. - №6(53). – С. 37-44.
  26. Марушко Ю.В. Корекція дефіциту магнію у дітей та підлітків з астенічним синдромом /Ю.В.Марушко, Т.В.Гищак //Проблемні питання діагностики та лікування дітей з соматичною патологією: материали науково-практичної конференції з міжнародною участю, Харків, 28 березня 2013. – С. 20-22.
  27. Марушко Ю.В. Роль вітамінів групи В у складі лікувальних препаратів при первинній артеріальній гіпотензії /Ю.В.Марушко, О.В.Хомич, Т.В.Гищак // Ліки України. – 2015. - №9-10 (195-296). – С.15-19.
  28. Марушко Ю.В. Патогенетична роль порушення обміну магнію і мелатоніну в розвитку первинної артеріальної гіпертензії у дітей / Ю.В.Марушко, Т.В.Гищак, А.С.Злобинець // Матеріали науково-практичної конференції лікарів-педіатрів з міжнародною участю. 21 березня 2014 р. м.Харків. - С.140-141.
  29. Можокина Г.Н.Экспериментальное обоснование применения таурина для профилактики нейротоксических реакций, вызванных изониазидом / Г.Н. Можокина, Н.А. Елистратова //Антибиотики и химиотерапия. - 2016.- № 3-4.-С.19-22.
  30. Морозова Л.В.Лекарственные средства природного происхождения в кардиологии / Л. В. Морозова //Фармация. - 2014.- № 7.-С.39-40.
  31. Немкова С. А. Комплексная диагностика и коррекция нарушений сна у детей / С.А.Немкова, О.И.Маслова, Н.Н.Заваденко [и др.] // Педиатрическая фармакология. - 2015. - №2. - С. 180-189.
  32. Нечаева Г.И.Эффективность и переносимость таурина у пациентов с сахарным діабетом / Г.И. Нечаева, И.В. Друк, Е.А. Ряполова // Поликлиника. -2015.- №№ 1(2).-С.58-62.
  33. Овсепян Л.М.Влияние таурина на окислительные процессы при отеке головного мозга / Л.М. Овсепян, Г.В. Захарян, М.М. Мелконян, А.В.Захарян// Журнал неврологии и психиатрии им.С.С.Корсакова. - 2015.- № 5.-С.64-67.
  34. Орлова Н. В. Применение L-карнитина в комплексном лечении вегетососудистой дистонии гипотензивного типа у детей и подростков /Н.В.Орлова, О.В.Михайлова, Т.В.Захарова // Вопросы современной педиатрии. – 2011. – Т.10, № 2. - С.11-15.
  35. Покровская Е.М.Новые возможности лечения пациентов с сердечной недостаточностью вследствие постинфарктного кардиосклерозаЕ.М. Покровская, Н.А. Волов, И.С. Васильева [и др. ] // Поликлиника. - 2014.- № 3(2).-С.13-16.
  36. Саидова В. Т. Диагностическое значение натрийуретических пептидов в педиатрии /В.Т.Саидова //Казанский мед. ж.— 2013. — Т. 94. — №3. — С.350-354.
  37. Спасов А. А. Функциональные резервы сердца в условиях алиментарного дефицита магния / А. А. Спасов, М. В. Харитонова, И. Н. Иежица [и др.] // Кардиология. - 2012. - №10. - С. 39-44.
  38. Стаценко М.Е.Эндотелиопротекторные свойства таурина у больных с хронической сердечной недостаточностью и сахарным диабетом 2 типаМ.Е. Стаценко, С.В. Туркина, Н.Н. Шилина, А.А. Винникова // Кардиоваскулярная терапия и профілактика. - 2016.- № 2.-С.38-44.
  39. Стаценко М.Е.Поражение печени у больных с хронической сердечной недостаточностью ишемического генеза и сахарным диабетом типа 2 - коварный тандем: возможности дополнительной органопротективной терапии / М.Е. Стаценко, С. В. Туркина, Н. Н. Шилина //Consiliummedicum. - 2016. - № 5. - С. 103-109.
  40. Степанов Ю. М. Аргинин в медицинской практике (Обзор литературы) / Ю. М.Степанов, И. Н.Кононов, А. И.Журбина, А. Ю. Филиппова // Сучас. гастроентерологія. – 2005. – №4. – С. 121–127.
  41. Шугалей В. С.Регуляция аргинином активности цитохрома Р450 и перекисного окисления липидов в печени и семенниках крыс при гипоксии / В. С.Шугалей, А. А. Ананян // Вопр. мед. хим. – 1991. – №4. – С. 51–54.
  42. Abbasi B. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial / B. Abbasi // J Res Med Sci. - 2012 - №17 (12) – Р. 1161-1169.
  43. Azevedo V. M. The role of L-carnitine in nutritional status and echocardiographic parameters in idiopathic dilated cardiomyopathy in children / Azevedo V.M. et al. // J Pediatr (Rio J). – 2005. – Vol. 81(5). – P. 368-372.
  44. Bode-Bоger S. M. Effect of L-arginine supplementation on NO production in man / S. M. Bode-Bоger // European Journal of Clinical Pharmacology – 2006 – V. 62, Supplement 13 – P. 91–99.
  45. Bоger R. H. The Pharmacodynamics of L-Arginine / R. H. Bоger // J. Nutr. 2007. – V. 137 – P. 1650–1655.
  46. Ho M.J.Blood pressure lowering efficacy ofcoenzyme Q10for primary hypertension / M. J. Ho,E. C. Li,J. M. Wright //Cochrane Database Syst Rev. – 2016. - № 3. – Р. 3:CD007435.
  47. Jankowski J. Coenzyme Q10- A new player in the treatment of heart failure? / J. Jankowski,K. Korzeniowska,A. Cieślewicz,A. Jabłecka //Pharmacol Rep. – 2016. - № 68(5). – Р. 1015-1019.
  48. Jia N. Taurinepromotes cognitive function in prenatally stressed juvenile rats via activating the Akt-CREB-PGC1α pathway / N. Jia,Q. Sun,Q. Su [et al.] // Redox Biol. – 2016. - V13, №10. – Р. 179-190.
  49. Jin K. Additional antihypertensive effect ofmagnesiumsupplementation with an angiotensin II receptor blocker in hypomagnesemic rats / K. Jin,T. H. Kim,Y. H. Kim,Y. W. Kim // Korean J Intern Med. – 2013. - №28 (2). – Р. 197-205.
  50. Li X. W.[Effect of antepartumtaurinesupplementation in regulating the activity of Rho family factors and promoting the proliferation of neural stem cells in neonatal rats with fetal growth restriction] / X. W. Li,F. Li,J. Liu [et al.] // Zhongguo Dang Dai Er Ke Za Zhi. – 2016. - № 8(11). – Р. 1158-1165.
  51. Luiking Y. C. Arginine de novo and nitric oxide production in disease states / Y. C. Luiking, G.A.T. Have, R.R. Wolfe [et al.] // American Journal of Physiology: Endocrinology and Metabolism. - 2012. - V. 303, №10. - Р. E1177-E1189.
  52. McRae M. P. Therapeutic Benefits ofl-Arginine: An UmbrellaReviewof Meta-analyses / M. P. McRae //J Chiropr Med. – 2016. - № 15(3). – Р. 184-189.
  53. Melik Z.L-arginineas dietary supplement for improving microvascular function / Z. Melik,P. Zaletel,T. Virtic,K. Cankar //Clin Hemorheol Microcirc. – 2016. - № 4. – Р. 134-138.
  54. Mortazavi M. Effect ofmagnesiumsupplementation on carotid intima-media thickness and flow-mediated dilatation among hemodialysis patients: a double-blind, randomized, placebo-controlled trial / M. Mortazavi,F. Moeinzadeh,M. Saadatnia [et al.] // Eur Neurol. – 2013. - № 69 (5). – Р. 309-316.
  55. Mortensen S. AQ-SYMBIOStudy Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results fromQ-SYMBIO: a randomized double-blind trial / S. A. Mortensen,F. Rosenfeldt,A. Kumar [et al.] // JACC Heart Fail. – 2014. - № 2(6). – Р. 641-649.
  56. Patel J. J. When Is It Appropriate to UseArgininein Critical Illness? / J. J. Patel,K. R. Miller,C. Rosenthal,M. D. Rosenthal // Nutr Clin Pract. – 2016. - № 31(4). – Р. 438-444.
  57. Rajapakse N. W.Say NO to Obesity-Related Hypertension: Role of theL-Arginine-Nitric Oxide Pathway / N. W. Rajapakse,G. A. Head,D. M. Kaye // Hypertension. – 2016. - № 67(5). – Р. 813-819.
  58. Rector T. S. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure / T. S.Rector, A. J.Bank, K. A.Mullen, L. K.Tschumperlin // Circulation. – 1997. – V. 18. – P. 1674–1679.
  59. Sharma A. Coenzyme Q10and Heart Failure: A State-of-the-ArtReview / A. Sharma,G. C. Fonarow,J. Butler [et al.] //Circ Heart Fail. – 2016. - № 9(4). – Р. e002639.
  60. Terrill J. R. Levels of inflammation and oxidative stress, and a role fortaurinein dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy / J. R. Terrill,M. N. Duong,R. Turner [et al.] // Redox Biol. – 2016. – №9. – Р. 276-286.
  61. Wong A. P. Myocardial energetics and the role of micronutrients in heart failure: a criticalreview / A. P. Wong,A. Niedzwiecki,M. Rath //Am J Cardiovasc Dis. – 2016. – V.15, № 6(3). – Р. 81-92.
  62. Yaris N. Serum carnitine levels during the doxorubicin therapy. Its role in cardiotoxicity / N.Yaris, N.Ceviz, T.Coskun [et al.] //J Exl Clin Cancer Res. – 2002. - №21(2). – Р.165–170.
  63. Zaher M. M. Serummagnesiumlevel and vascular stiffness inchildrenwith chronic kidney disease on regular hemodialysis / M. M. Zaher,M. Abdel-Salam,R. Abdel-Salam [et al.] // Saudi J Kidney Dis Transpl. – 2016. - № 27 (2). – Р. 233-240.


Профілактичні властивості комплексу амінокислот, вітамінів та біоактивних речовин Карділекс

Ю.В.Марушко, Т.В.Гищак

Карділекс – збалансований комплекс амінокислот, вітамінів і біоактивних речовин, що використовується для покращення діяльності серцево-судинної системи.До складу карділексу входить левокарнітин, левоаргінін, таурин, коензим Q-10, вітамін В5, вітамін РР, вітамін В6, вітамін С, магній та екстракт глоду. Кожен із компонентів препарату має широкий спектр дії в організмі і ключовим компонентом цього спектру є вплив на серцево-судинну систему.

Мета роботи – узагальнити данні літератури щодо властивостей складових Карділексу та можливості його застосування у профілактичній медицині.

Висновки: карділекс може бути ефективним в якості натурального енерготоніка; в комплексній профілактиці серцево-судинних захворювань: ішемічної хвороби серця, аритмії, кардіоміопатії, а також при атеросклерозі, гіпертонії і м’язовій дистрофії; в комплексній терапії в реабілітаційний період після перенесених тяжких захворювань; в якості профілактичного засобу для попередження виснаження при черезмірних фізичних, розумових навантаженнях і при знаходженні в екологічно несприятливих умовах; з метою нормалізації метаболізму, зменшення жирових відкладень, зміцнення м’язових тканин, в період реабілітації після радіо- і хіміотерапії; як загальнозміцнюючий засіб.


Профилактические свойства комплекса аминокислот, витаминов и биоактивных веществ Кардилекс

Ю.В.Марушко, Т.В.Гищак

Кардилекс - сбалансированный комплекс аминокислот, витаминов и биоактивных веществ, используется для улучшения деятельности сердечно-сосудистой системи. В состав кардилекса входит левокарнитин, левоаргинин, таурин, коэнзим Q-10, витамин В5, витамин РР, витамин В6, витамин С, магний и экстракт боярышника. Каждый из компонентов препарата имеет широкий спектр действия в организме и ключевым компонентом этого спектра является влияние на сердечно-сосудистую систему.

Цель работы - обобщить данные литературы о свойствах составляющих Кардилекса и возможностях его применения в профилактической медицине.

Выводы: кардилекс может быть эффективным в качестве натурального энерготоника; в комплексной профилактике сердечно-сосудистых заболеваний: ишемической болезни сердца, аритмии, кардиомиопатии, а также при атеросклерозе, гипертонии и мышечной дистрофии; в комплексной терапии в реабилитационный период после перенесенных тяжелых заболеваний; в качестве профилактического средства для предупреждения истощения при чрезмерных физических, умственных нагрузках и при нахождении в экологически неблагоприятных условиях; с целью нормализации метаболизма, уменьшения жировых отложений, укрепления мышечных тканей, в период реабилитации после радио- и химиотерапии; как общеукрепляющее средство.


Preventive properties of complex aminoacids, vitamins and bioactive substances Kardileks

Yu.V.Marushko, T.V.Hyschak

Kardileks - balanced complex of aminoacids, vitamins and bioactive substances used to improve the cardiovascular system.Kardileks contains levokarnityn, levoarhinin, taurine, coenzyme Q-10, vitamin B5, vitamin PP, vitamin B6, vitamin C, magnesium and hawthorn extract. Each of the components has a broad spectrum of action in the body and a key component of the spectrum is the effect on the cardiovascular system.

Purpose - to summarize the literature data on the properties of the Kardileks components and its possible application in preventive medicine.

Conclusions: kardileks can be effective as a natural reducing energy product; in the overall prevention of cardiovascular diseases: ischemic heart disease, arrhythmias, cardiomyopathy, as well as atherosclerosis, hypertension and muscular dystrophy; in a rehabilitation period after suffering serious diseases; as a prophylactic to prevent exhaustion at physical and mental stress while in environmentally adverse conditions; to normalize metabolism, reduce body fat, strengthen muscle tissue, during rehabilitation after radio- and chemotherapy; as a fortifying agent.